Network Systems
Science & Advanced
Computing

Biocomplexity Institute & Initiative

University of Virginia

Estimation of COVID-19 Impact in Virginia

April 28th, 2021

(data current to April 26th – April 27th)
Biocomplexity Institute Technical report: TR 2021-048

BIOCOMPLEXITY INSTITUTE

biocomplexity.virginia.edu

About Us

- Biocomplexity Institute at the University of Virginia
 - Using big data and simulations to understand massively interactive systems and solve societal problems
- Over 20 years of crafting and analyzing infectious disease models
 - Pandemic response for Influenza, Ebola, Zika, and others

Points of Contact

Bryan Lewis brylew@virginia.edu

Srini Venkatramanan srini@virginia.edu

Madhav Marathe marathe@virginia.edu

Chris Barrett@virginia.edu

Model Development, Outbreak Analytics, and Delivery Team

Przemyslaw Porebski, Joseph Outten, Brian Klahn, Alex Telionis, Srinivasan Venkatramanan, Bryan Lewis, Aniruddha Adiga, Hannah Baek, Chris Barrett, Jiangzhuo Chen, Patrick Corbett, Stephen Eubank, Ben Hurt, Dustin Machi, Achla Marathe, Madhav Marathe, Mark Orr,

Akhil Peddireddy, Asal Pilehvari, Erin Raymond, James Schlitt, Anil Vullikanti, Lijing Wang,

James Walke, Andrew Warren, Amanda Wilson, Dawen Xie

Overview

• Goal: Understand impact of COVID-19 mitigations in Virginia

Approach:

- Calibrate explanatory mechanistic model to observed cases
- Project based on scenarios for next 4 months
- Consider a range of possible mitigation effects in "what-if" scenarios

Outcomes:

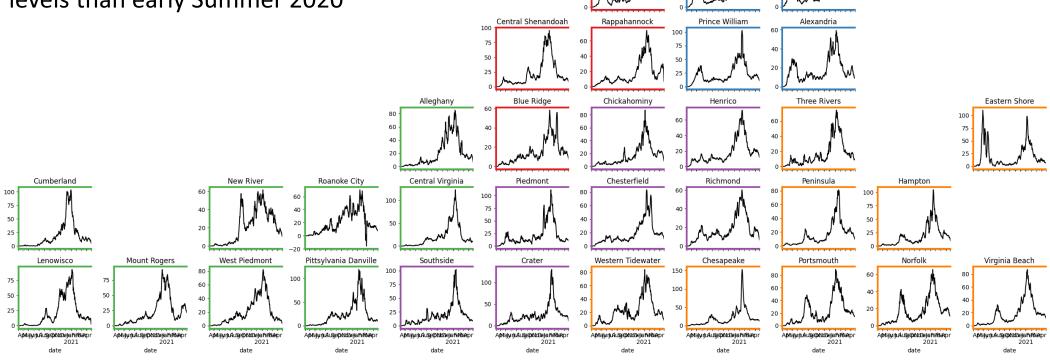
- Ill, Confirmed, Hospitalized, ICU, Ventilated, Death
- Geographic spread over time, case counts, healthcare burdens

Key Takeaways

Projecting future cases precisely is impossible and unnecessary. Even without perfect projections, we can confidently draw conclusions:

- Case rates in Virginia overall are declining with a few areas of growth
- VA mean weekly incidence down to 13/100K from 16/100K, US down (16 from 19 per 100K)
- Population immunity in VA reaches ~50% from vaccines and natural immunity
- Projections show declining rate overall across Commonwealth
- Recent updates:
 - Updated estimates of regional vaccine hesitancy and folded into projections
 - Modeled impact of increased acceptance against future surges in the Fall

The situation continues to change. Models continue to be updated regularly.


Situation Assessment

Case Rate (per 100k) by VDH District

Recent upticks across multiple districts

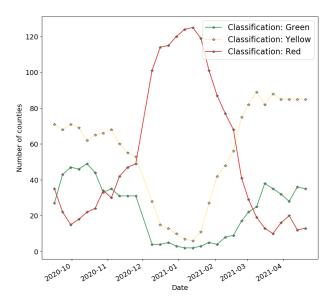
- Most districts are plateaued but an increasing number show surging or slow growth
- Higher levels than early Summer 2020

Rappahannock Rapidan

Test Positivity by VDH District

Weekly changes in test positivity by district

- Some upticks/flattening in the positivity rates
- Nearly 75% of counties still in Red or Yellow categories

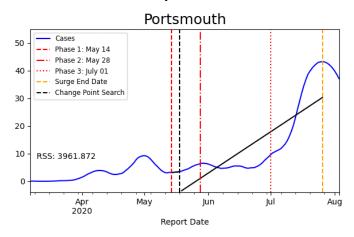

Cumberland Cumber

County level test positivity rates for RT-PCR tests.

Green: Test positivity <5.0% (or with <20 tests in past 14 days)

Yellow: Test positivity 5.0%-10.0% (or with <500 tests and <2000 tests/100k and >10% positivity over 14 days)

Red: >10.0% and not meeting the criteria for "Green" or "Yellow"

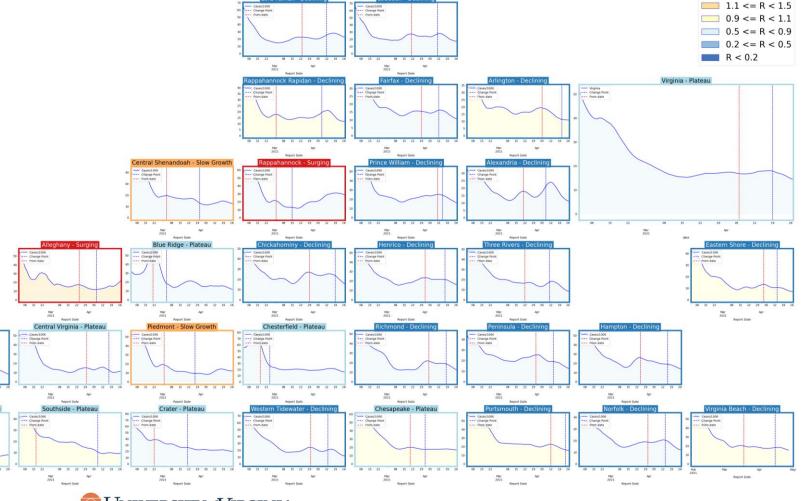

https://data.cms.gov/stories/s/q5r5-gjyu

District Trajectories

Goal: Define epochs of a Health District's COVID-19 incidence to characterize the current trajectory

Method: Find recent peak and use hockey stick fit to find inflection point afterwards, then use this period's slope to define the trajectory

Hockey stick fit

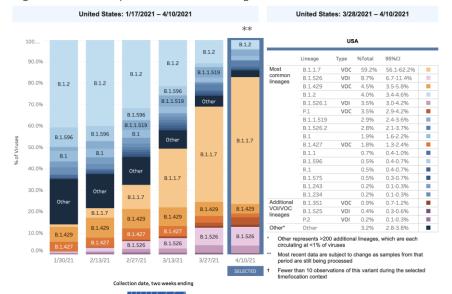

Trajectory	Description	Weekly Case Rate (per 100K) bounds	# Districts (prev week)
Declining	Sustained decreases following a recent peak	below -0.9	22 (9)
Plateau	Steady level with minimal trend up or down	above -0.9 and below 0.5	9 (18)
Slow Growth	Sustained growth not rapid enough to be considered a Surge	above 0.5 and below 2.5	2 (7)
In Surge	Currently experiencing sustained rapid and significant growth	2.5 or greater	2 (1)

District Trajectories – last 10 weeks

Status	# Districts (prev week)
Declining	22 (9)
Plateau	9 (18)
Slow Growth	2 (7)
In Surge	2 (1)

Curve shows smoothed case rate (per 100K) Trajectories of states in label & chart box Case Rate curve colored by Reproductive

Emerging new variants will alter the future trajectories of pandemic and have implications for future control


- Current evidence supports that new variants can:
 - Increase transmissibility
 - Increase severity (more hospitalizations and/or deaths)
 - Limit immunity provided by prior infection and vaccinations
- Genomic surveillance remains very limited
 - Challenges ability to estimate impact in US to date and estimation of arrival and potential impact in future

Lineages Of Concern							
LoC name	PANGO lineage	NextStrain lineage	Other synonyms	Emergence date	Emergence location	Key AA substitutions in spike protein	Impact
B.1.1.7	B.1.1.7	20I/501Y.V1	VOC 202012/01, UK variant	September 2020	Southeast England	H69-, V70-, N501Y, D614G, P681H	Increased transmissibility; S gene target failure (SGTF)
B.1.351	B.1.351	20H/501Y.V2	South African variant	October 2020	Nelson Mandela Bay, South African	L241-, L242-, A243-, K417N, E484K, N501Y, D614G	loss of serum antibody neutralization
P.1	B.1.1.28	20J/501Y.V3	Brazilian variant	July 2020	Brazil	K417T, E484K, N501Y, D614G	Increased transmissibility; loss of serum antibody neutralization
CAL.20C	B.1.429			July 2020	Southern California, USA	W152C, L452R, D614G	loss of monoclonal antibody binding
B.1.375	B.1.375			September 2020	Massachusetts, USA	H69-, V70-, D614G	S gene target failure (SGTF)

NIH-NIAID Bacterial-Viral Bioinformatics Resource Center

Weighted Estimates of Proportions of SARS-CoV-2 Lineages

CDC Variant Tracking

outbreak.info
Outbreak Info

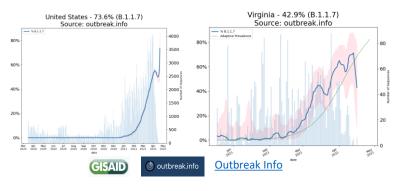
28-Apr-21

Lineage B.1.1.7

 B.1.1.7 has been detected in Virginia and has continued to rapidly grow though has been hard to track. Currently estimated to account for over 2/3^{rds} of circulating virus in US and VA's volatile estimate is down to 43%, likely higher

Transmissibility:

- <u>Science</u> study using two-strain model supports that increased transmissibility, duration of infectiousness, or increased transmission in children best fit the epi data observed in the UK across regions. Some combination of all also likely.
- <u>Study from Public Health England</u> shows contacts of B.1.1.7 cases are more likely (50%) to test positive than contacts of non-B.1.1.7 patients
- Study shows B.1.1.7 patients have longer periods of infection


Severity:

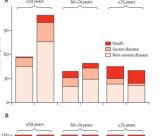
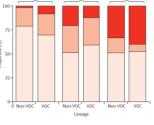
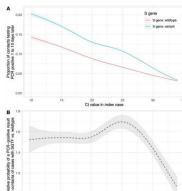

- <u>Evidence</u> continues <u>to mount</u> supporting increased risks of hospitalization and mortality for B.1.1.7 infected individuals
- <u>Danish</u> study shows B.1.1.7 to have a 64% higher risk of hospitalization, while <u>Public Health Scotland</u> studies showed a range of 40% to 60%
- <u>Study in Nature</u> based on UK data estimates B.1.1.7 cases have 60% higher mortality
- <u>Sequence based study of hospitalized patients in Lancet</u>, found no association with severity and death among hospitalized from B.1.1.7

Table 1 | Absolute 28-day mortality risk associated wit B.1.1.7, as expressed by case fatality ratio (%) among individuals testing positive in the community

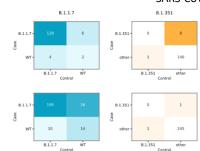

Sex	Age	Baseline	SGTF, complete cases	p _{voc} , IPW
Female	0-34	0.00069%	0.0011% (0.00096-0.0012%)	0.0011% (0.00097-0.0012%)
	35-54	0.033%	0.050% (0.045-0.056%)	0.052% (0.046-0.059%)
	55-69	0.18%	0.28% (0.25-0.31%)	0.29% (0.26-0.33%)
	70-84	2.9%	4.4% (4.0-4.9%)	4.6% (4.0-5.1%)
	85 and older	13%	19% (17–21%)	20% (18-22%)
Male	0-34	0.0031%	0.0047% (0.0042-0.0052%)	0.0049% (0.0043-0.0055%)
	35-54	0.064%	0.099% (0.089-0.11%)	0.10% (0.090-0.12%
	55-69	0.56%	0.86% (0.77-0.95%)	0.89% (0.78-1.0%)
	70-84	4.7%	7.2% (6.4-7.9%)	7.4% (6.6-8.3%)
	85 and older	17%	25% (23-27%)	26% (23-29%)

e baseoine nas (i.e., for preessing) sance-cov-2 variants) is cerved using intend centre. With 28 days for all individuals testing positive in the community from 1 August = 31 Octobe 202. Adjusted risks are presented for the SOTF analysis for complete cases and for the isolassification-adjusted ($\rho_{\rm cov}$) IPW analysis, which yielded the lowest and highest mortaling timates, respectively, of the main models assessed (Fig. 2a–d).

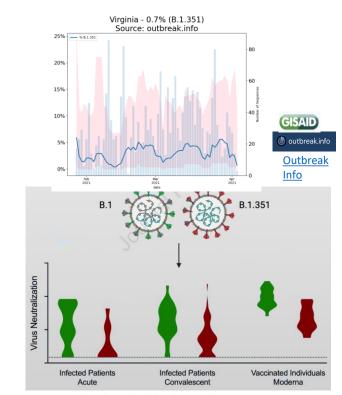


Of 496 patients with samples positive for SARS-CoV-2 on PCR and who met inclusion criteria, 341 had samples that could be sequenced. 198 (58%) of 341 had B.1.1.7 infection and 143 (42%) had non-B.1.1.7 infection. We found no evidence of an association between severe disease and death and lineage (B.1.1.7 vs non-B.1.1.7) Lancet

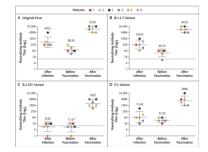
PCR testing in England from Sept 2020 – Feb 2021 combined with contact tracing data found B.1.1.7 cases to have higher viral loads (based on PCR cycle thresholds) and increased likelihood of causing infections among contacts.
B.1.1.7 increased transmission by ~50%.
Medrxiv



Lineage B.1.351


• Emerging strain initially identified in South Africa shows signs of vaccine escape, currently under 1% of circulating virus

Immune Escape:

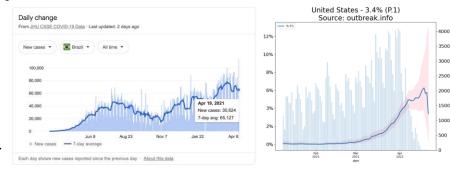

- Many studies show that convalescent sera from previously infected individuals does not neutralize B.1.351 virus well, however, vaccine induced immunity shows signs of effectiveness
- One study supports a previous study based on clinical trial data showing that convalescent serum neutralization is highly predictive of actual immune protection for infection
- <u>Another study in Cell</u> supports a <u>previous report</u> demonstrating that despite reduced antibody binding, the Moderna vaccinated individuals able to neutralize the B.1.351 variant
- New England Journal Study shows that for people with prior infections who are then vaccinated (one dose of Pfizer) the boosted immunity is effective against B.1.351
- Some <u>evidence emerging</u> that variants like B.1.351 may be more likely to cause secondary infections after vaccination. As more of the population is protected we may find B.1.351 and other immune evading variants becoming more prevalent.

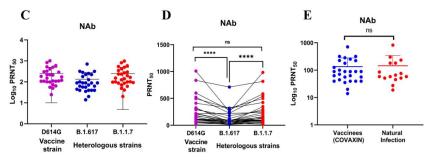
Small Case control study suggests that among those infected after their 1st and 2nd dose, they are more likely to be B.1.351 in the earlier infections, and B.1.1.7 in the later breakthrough infections. Medrxiv

Despite reduced antibody binding to the B.1.351 RBD, sera from infected (acute and convalescent) and Moderna (mRNA-1273) vaccinated individuals were still able to neutralize the SARS-CoV-2 B.1.351 variant. Cell

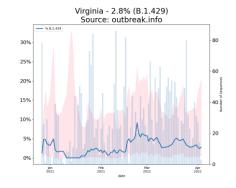
Six patients previously infected with the original virus received the BNT162b2 vaccine. Before vaccination, they had neutralizing activity against the B.1.1.7 and P.1 variants but not B.1.351. After one dose, neutralizing activity against all variants increased greatly. NEJM

Lineage P.1


- At least 3.4% prevalence in US, likely higher, while Brazil suffering significant caseloads for prolonged period has 43% prevalence
- Study in Cell shows P.1 may be less resistant to neutralization than B.1.351


Lineage B.1.617

- Suspected of driving significant surge in India, so called "double mutant" possesses mutations similar to B.1.1.7, B.1.351, and B.1.429; suspected of being more transmissible and able to partially evade immunity
- A few cases already identified in UK and US as well
- <u>Preliminary study</u> from hard hit Maharashtra state shows vaccine induced and natural immunity convalescent sera can neutralize B.1.617 virus


Lineage B.1.429/427 and B.1.526 and subvariants

- Combined account for around 20% of circulating virus, share may be shrinking as B.1.1.7 outcompetes
- Evidence suggests these variants as slightly more transmissible and also exhibit some immune escape

Twelve isolates of VUI lineage B.1.617 were propagated in VeroCCL81 cells and characterized. Convalescent sera of the COVID-19 cases and recipients of BBV152 (Covaxin) were able to neutralize VUI B.1.617. BioRxiv

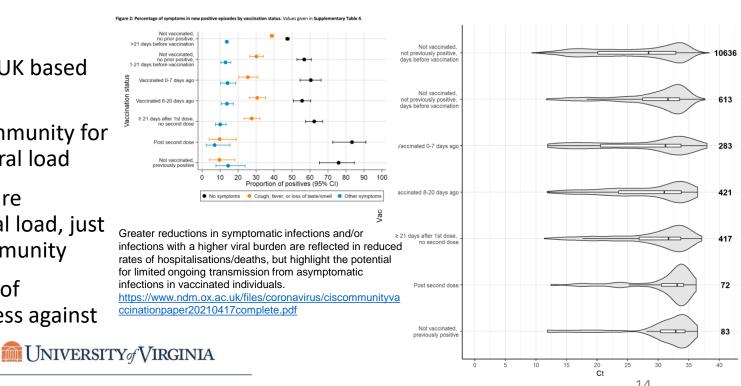
MIVERSITY OF VIRGINIA

Vaccination Developments

Breakthroughs

- Only 7k reported infections among the 87M people fully vaccinated in the US
- 7% hospitalized, 1% mortality (some portion of these are due to non-COVID reasons)

Measured Reductions in Viral Load & Symptoms

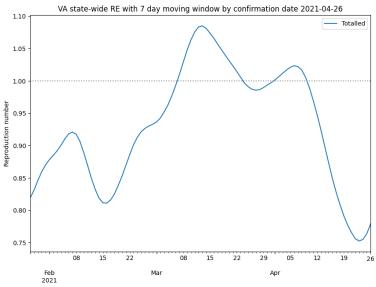

- Recent study of breakthrough infections in the UK based on over 300K individuals providing PCR tests
- Full vaccination slightly stronger than natural immunity for eliminating symptoms and driving the lowest viral load
- Various combinations of timings after 1st dose are effective in reducing symptoms and limiting viral load, just not as effective as full vaccination or natural immunity
- Reduced viral loads in asymptomatic infections of vaccinated individuals suggest some effectiveness against on-going transmission

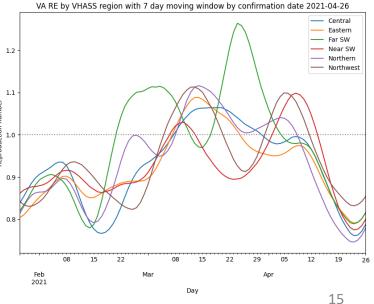
As of April 20, 2021, more than 87 million people in the United States had been fully vaccinated against COVID-19. During the same time, CDC received reports of vaccine breakthrough infections from 45 U.S. states and territories.

Total number of vaccine breakthrough infections reported to CDC	7,157
Females	4,580 (64%)
People aged ≥60 years	3,265 (46%)
Asymptomatic infections	2,078 (31%)
Hospitalizations*	498 (7%)
Deaths†	88 (1%)

*167 (34%) of the 498 hospitalizations were reported as asymptomatic or not related to COVID-19. †11 (13%) of the 88 fatal cases were reported as asymptomatic or not related to COVID-19.

www.cdc.gov/vaccines/covid-19/health-departments/breakthrough-cases.htm

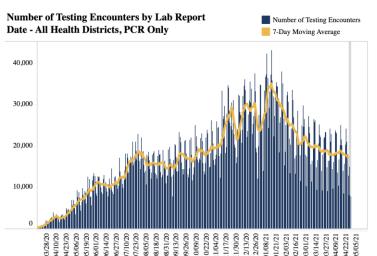

Estimating Daily Reproductive Number

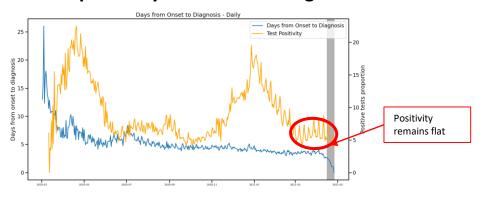

April 26th Estimates

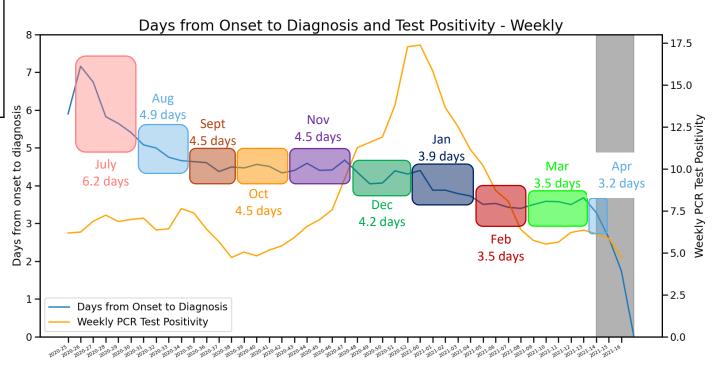
Region	Date Confirmed R _e	Date Confirmed Diff Last Week
State-wide	0.779	-0.156
Central	0.788	-0.185
Eastern	0.816	-0.129
Far SW	0.816	-0.143
Near SW	0.800	-0.221
Northern	0.779	-0.110
Northwest	0.854	-0.121

Methodology

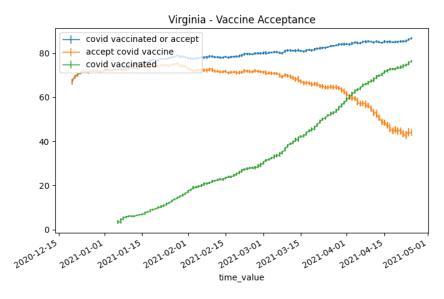
- Wallinga-Teunis method (EpiEstim¹) for cases by confirmation date
- Serial interval: updated to discrete distribution from observations (mean=4.3, Flaxman et al, Nature 2020)
- Using Confirmation date since due to increasingly unstable estimates from onset date due to backfill

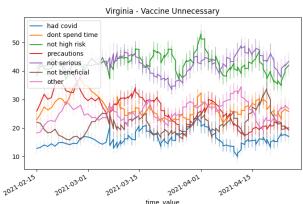



^{1.} Anne Cori, Neil M. Ferguson, Christophe Fraser, Simon Cauchemez. A New Framework and Software to Estimate Time-Varying Reproduction Numbers During Epidemics. American Journal of Epidemiology, Volume 178, Issue 9, 1 November 2013, Pages 1505–1512, https://doi.org/10.1093/aje/kwt133

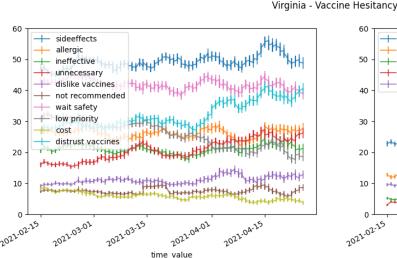

Changes in Case Detection

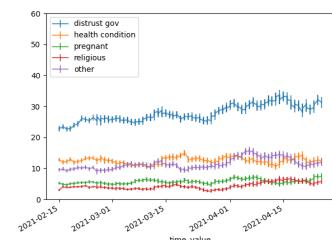
Timeframe (weeks)	Mean days	% difference from overall mean
July (26-30)	6.2	-4%
Aug (31-34)	4.9	-24%
Sept (35-38)	4.5	-30%
Oct (39-43)	4.5	-31%
Nov (44-47)	4.5	-30%
Dec (48-49)	4.2	-34%
Jan (00-04)	3.9	-39%
Feb (05-08)	3.5	-46%
Mar (09-13)	3.6	-45%
Apr (14-14)	3.3	-49%
Overall (13-12)	6.4	




Test positivity vs. Onset to Diagnosis

Vaccine Acceptance in Virginia





Data Source: https://covidcast.cmu.edu

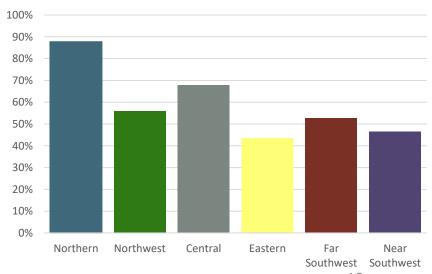
Acceptance remains high:

- Proportion of Virginians that have already or would definitely or probably accept vaccination if offered today
- Survey respondents are reporting high levels of vaccination of ~70% reflecting some bias of the mechanism
- Over 80% of Virginians have already or will choose to be vaccinated
- Top reasons for hesitancy: side effects, safety, distrust (increasing)
- Reasons for unnecessary vaccine: increasing levels of "not serious" disease in past 2 weeks

Vaccination Acceptance by Region

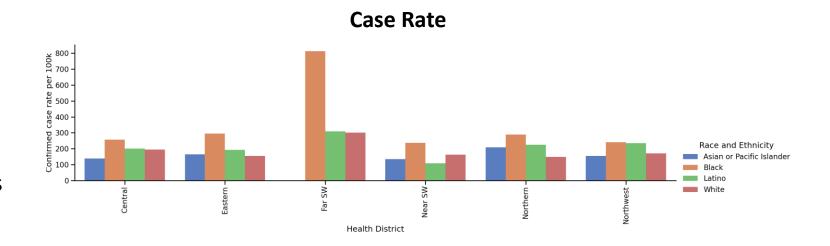
Combined Surveys:

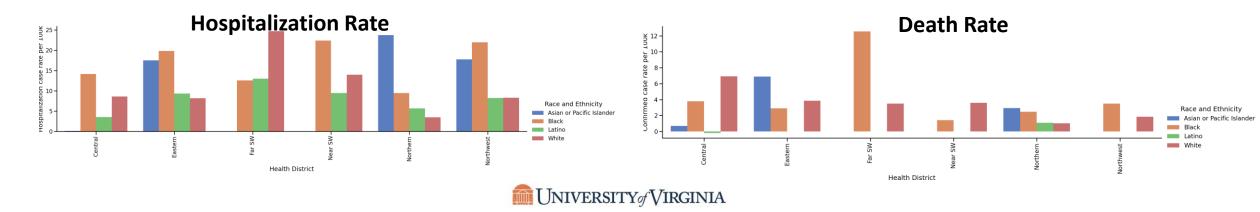
- Facebook administered survey is timely and broad, but biased by who accesses Facebook and answers the survey
- Traditional phone-based survey administered several weeks ago for VDH vaccine messaging purposes is better sampled for true representativeness
- Correction approach:
 - Calculate an over-reporting fraction based on reported vaccinations (Apr 15-24) vs. VDH administration data
 - Cross-validate coarse corrections against traditional survey and found values were similar across regions, except in Eastern and Northwest which had more than 10% difference.
- Slight fluctuations compared to last week



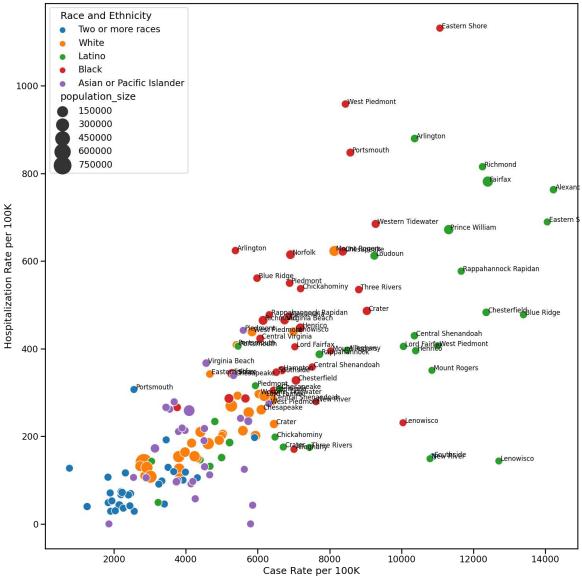
Data Source: https://covidcast.cmu.edu

Virginia Region	Vax Already or Accepting of Vaccine	Vax Already or Accepting of Vaccine (last week)
Northern	88%	81%
Northwest	56%	57%
Central	68%	72%
Eastern	43%	51%
Far Southwest	53%	50%
Near Southwest	47%	53%


Estimated Vaccine Acceptance



Race and Ethnicity – Recent Rate Changes (per 100K)


Changes in Race and Ethnicity Rates (per 100k) in past two weeks

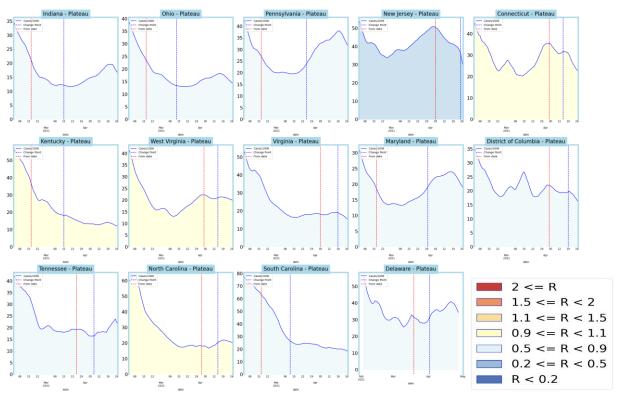
- Two week change in population level rates
- Black, Latinx and 2 or more races populations have much higher changes in rates; disparity is more pronounced in some regions than others
- Based on 2019 census race-ethnicity data by county

Race and Ethnicity cases per 100K

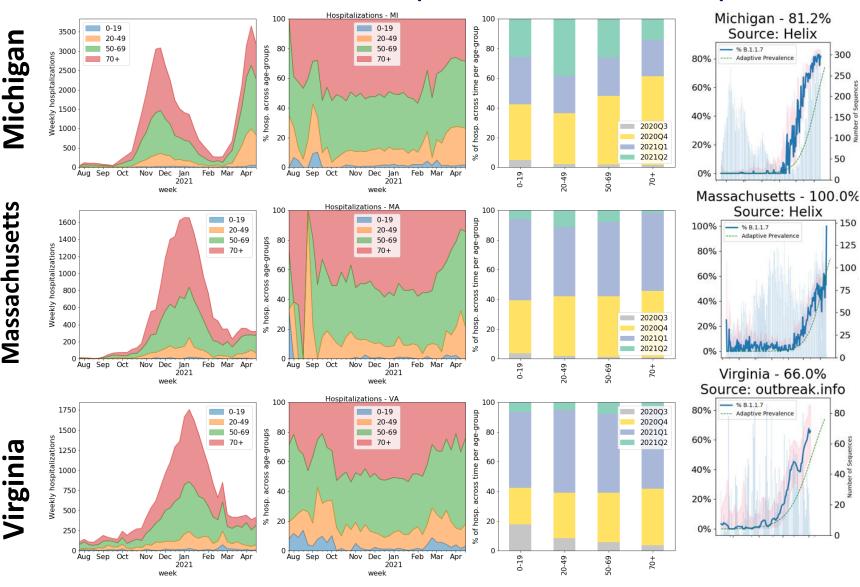
Rates per 100K of each Racial-Ethnic population by Health District

- Each Health District's Racial-Ethnic population is plotted by their Hospitalization and Case Rate
- Points are sized based on their overall population size (overlapping labels removed)

28-Apr-21


Other State Comparisons

- Nearly all states are plateaued, with 2 jurisdictions now in surge, though all are leveling off
- Some states in West are growing but for most case growth is flat to slowly declining

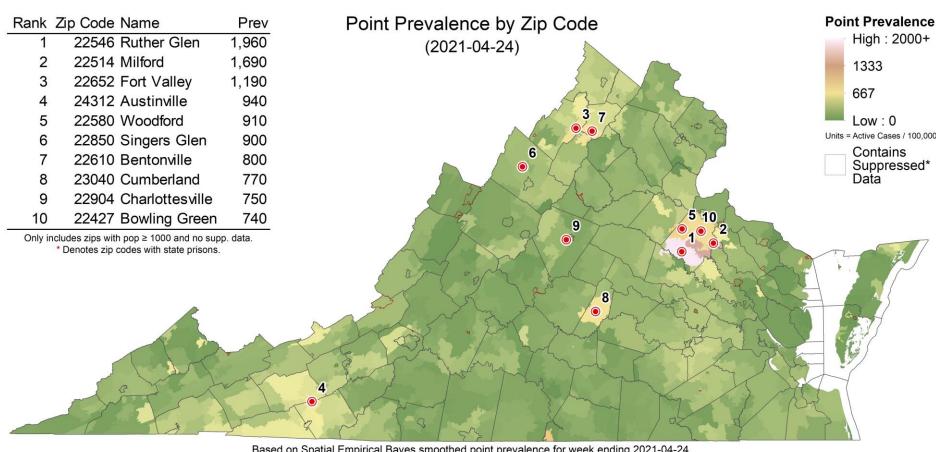

 UNIVERSITY VIRGINIA

Virginia and her neighbors

- VA and neighbors remain in plateau, with many showing slowly declining rates
- Levels remain high but slow and steady progress evident

Other State Comparisons - Hospitalizations

Shifting Age Distribution of cases being hospitalized


- Dual forces of vaccinations in older groups and severity of B.1.1.7 are dramatically shifting the age distribution of hospitalized patients
- Michigan's hospitalizations are rising steeply, consist of more 20-59 year olds
- Massachusetts has significant B.1.1.7 prevalence but one of the highest vaccination levels
- Virginia has high vaccination and is maintaining lower levels of hospitalizations

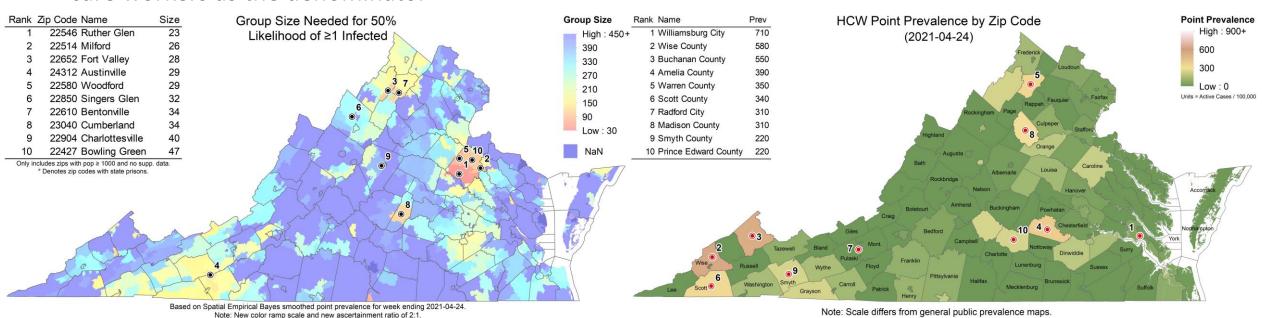
28-Apr-21 22

Zip code level weekly Case Rate (per 100K)

Case Rates in the last week by zip code

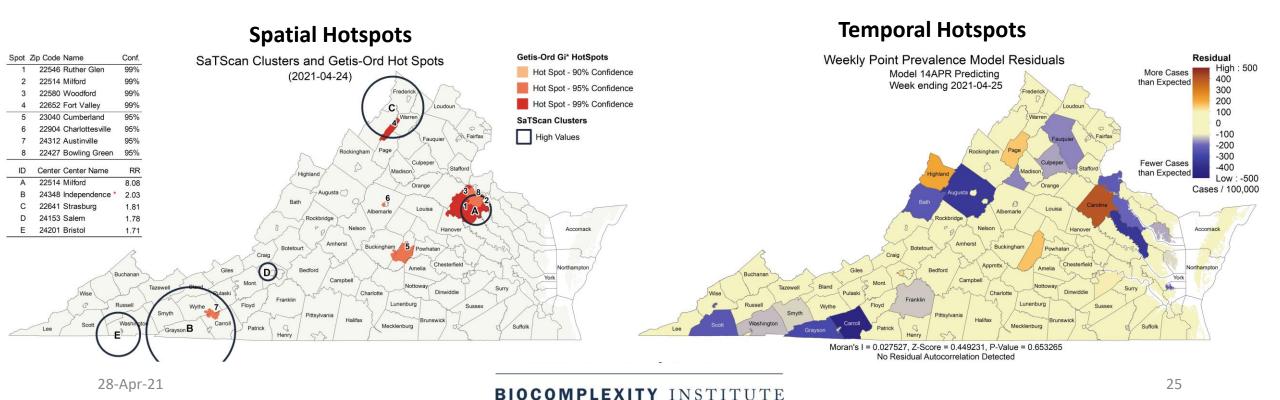
- Concentrations in Southwest, which was preceded by cluster of increased HCW rates last week
- Still some universities in top 10
- Some counts are low and suppressed to protect anonymity, those are shown in white

Based on Spatial Empirical Bayes smoothed point prevalence for week ending 2021-04-24.


Note: New color ramp scale and new ascertainment ratio of 2:1.

Risk of Exposure by Group Size and HCW prevalence

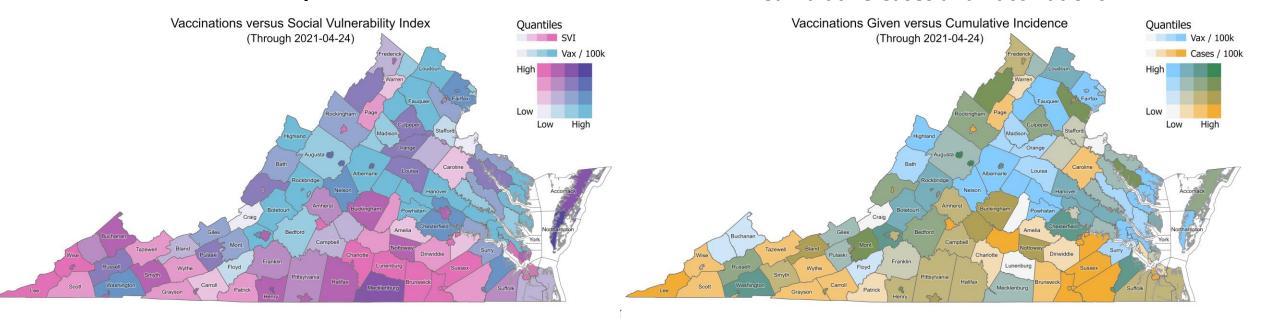
Case Prevalence in the last week by zip code used to calculate risk of encountering someone infected in a gathering of randomly selected people (group size 25)


- **Group Size**: Assumes 2 undetected infections per confirmed case (ascertainment rate from recent seroprevalence survey), and shows minimum size of a group with a 50% chance an individual is infected by zip code (eg in a group of 23 in Ruther Glen, there is a 50% chance someone will be infected)
- **HCW prevalence**: Case rate among health care workers (HCW) in the last week using patient facing health care workers as the denominator

Current Hot-Spots

Case rates that are significantly different from neighboring areas or model projections

- **Spatial**: SaTScan based hot spots compare clusters of zip codes with weekly case prevalence higher than nearby zip codes to identify larger areas with statistically significant deviations
- **Temporal**: The weekly case rate (per 100K) projected last week compared to observed by county, which highlights temporal fluctuations that differ from the model's projections



Overlap of Vaccination with Disease and Social Factors

Case rates that are significantly different from neighboring areas or model projections

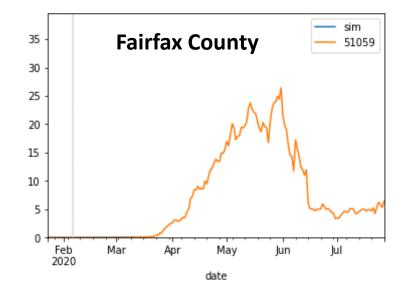
- Social Vulnerability: Each county's Social Vulnerability Index (CDC) compared with the level of vaccination
 - Pink: Low Vax-High SVI; Purple: High Vax-High SVI; White: Low Vax-Low SVI; Blue: High Vax-Low SVI
- **Cumulative Cases**: As a measure of the impact of the disease, total cumulative case rate to date compared to the level of vaccination

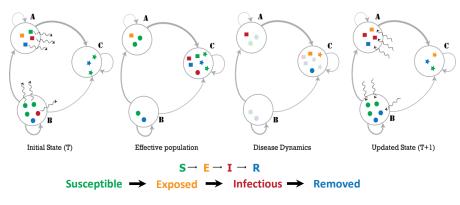
Blue: High Vax-Low Cases; Green: High Vax-High Cases; White: Low Vax-Low Cases; Orange: Low Vax-High Cases;
 Social Vulnerability and Vaccinations
 Cumulative Cases and Vaccinations

Model Update – Adaptive Fitting

Adaptive Fitting Approach

Each county fit precisely, with recent trends used for future projection


 Allows history to be precisely captured, and used to guide bounds on projections


Model: An alternative use of the same meta-population model, PatchSim

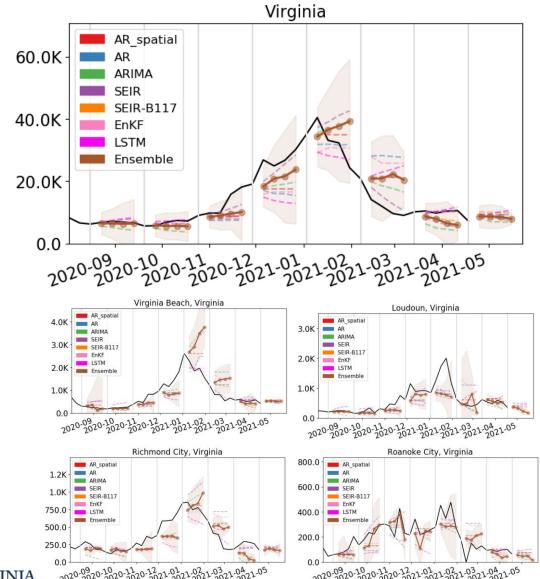
- Allows for future "what-if" Scenarios to be layered on top of calibrated model
- Eliminates connectivity between patches, to allow calibration to capture the increasingly unsynchronized epidemic

External Seeding: Steady low-level importation

- Widespread pandemic eliminates sensitivity to initial conditions
- Uses steady 1 case per 10M population per day external seeding

Using Ensemble Model to Guide Projections

Ensemble methodology that combines the Adaptive with machine learning and statistical models such as:

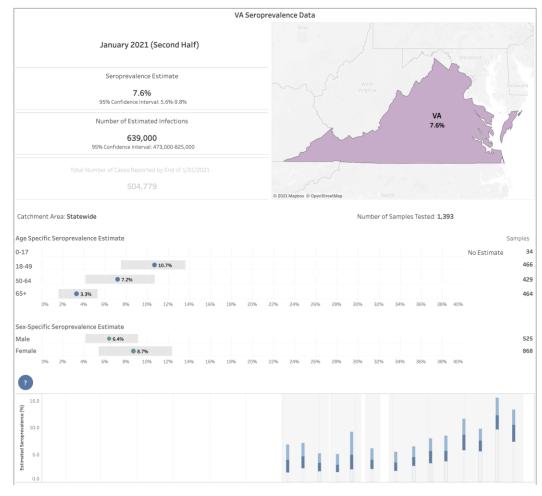

- Autoregressive (AR, ARIMA)
- Neural networks (LSTM)
- Kalman filtering (EnKF)

Weekly forecasts done at county level.

Models chosen because of their track record in disease forecasting and to increase diversity and robustness.

Ensemble forecast provides additional 'surveillance' for making scenario-based projections.

Also submitted to CDC Forecast Hub.


Seroprevalence updates to model design

Several seroprevalence studies provide better picture of how many actual infections have occurred

 CDC Nationwide Commercial Laboratory Seroprevalence Survey estimated 7.6% [5.6% – 9.8%] seroprevalence as of Jan 7th – 21st up from 5.7% a month earlier

These findings are equivalent to an ascertainment ratio of ~2x in the future, with bounds of (1.3x to 3x)

- Thus for 2x there are 2 total infections in the population for every confirmed case recently
- This measure now fully tracks the estimated ascertainment over time
- Uncertainty design has been shifted to these bounds (previously higher ascertainments as was consistent earlier in the pandemic were being used)

https://covid.cdc.gov/covid-data-tracker/#national-lab

Calibration Approach

- Data:
 - County level case counts by date of onset (from VDH)
 - Confirmed cases for model fitting
- Calibration: fit model to observed data and ensemble's forecast
 - Tune transmissibility across ranges of:
 - Duration of incubation (5-9 days), infectiousness (3-7 days)
 - Undocumented case rate (1x to 7x) guided by seroprevalence studies
 - Detection delay: exposure to confirmation (4-12 days)
 - Approach captures uncertainty, but allows model to precisely track the full trajectory of the outbreak
- Project: future cases and outcomes generated using the collection of fit models run into the future
 - Mean trend from last 7 days of observed cases and first week of ensemble's forecast used
 - Outliers removed based on variances in the previous 3 weeks
 - 2 week interpolation to smooth transitions in rapidly changing trajectories

COVID-19 in Virginia:

Dashboard Updated: 4/28/2021 Data entered by 5:00 PM the prior day.

		Cases, Hospitaliza	ations and Deaths		
Total 6		Tot Hospitali		Tot Dea	
(New Cases: 1,120)^		28,	271	10,	735
Confirmed† 510,867	Probable† 146,287	Confirmed† 26,782	Probable† 1,489	Confirmed† 9,019	Probable† 1,716

^{*} Includes both people with a positive test (Confirmed), and symptomatic with a known exposure to COVID-19 (Probable)

ere: https://wwwn.cdc.gov/nndss/conditions/coronavirus-disease-2019-covid-19/case-definition/2020/08/05/

Out	breaks
Total Outbreaks*	Outbreak Associated Cases
3,086	71,982

^{*} At least two (2) lab confirmed cases are required to classify an outbreak.

Testing (PCR Only)		
Testing Encounters PCR Only*	Current 7-Day Positivity Rate PCR Only**	
6,994,812	5.1%	

^{*} PCR" refers to "Reverse transcriptase polymerase chain reaction laboratory testing."

^{*} Lab reports may not have been received yet. Percent positivity is not calculated for days with incomplete data.

Multisystem Inflammatory Syndrome in Children		
Total Cases*	Total Deaths	
61	0	

^{*}Cases defined by CDC HAN case definition: https://emergency.cdc.gov/han/2020/han00432.asg

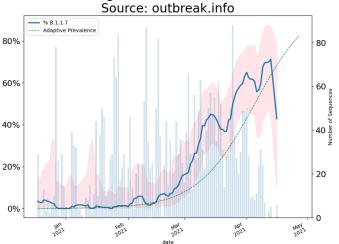
Accessed 9:00am April 28, 2021

https://www.vdh.virginia.gov/coronavirus/

^{**} Hospitalization of a case is captured at the time VDH performs case investigation. This underrepresents the total number of hospitalizations in Virginia.

New cases represent the number of confirmed and probable cases reported to VDH in the past 24 hours.

[†] VDH adopted the updated CDC COVID-19 confirmed and probable surveillance case definitions on August 27, 2020. Found


Scenarios – Transmission Control

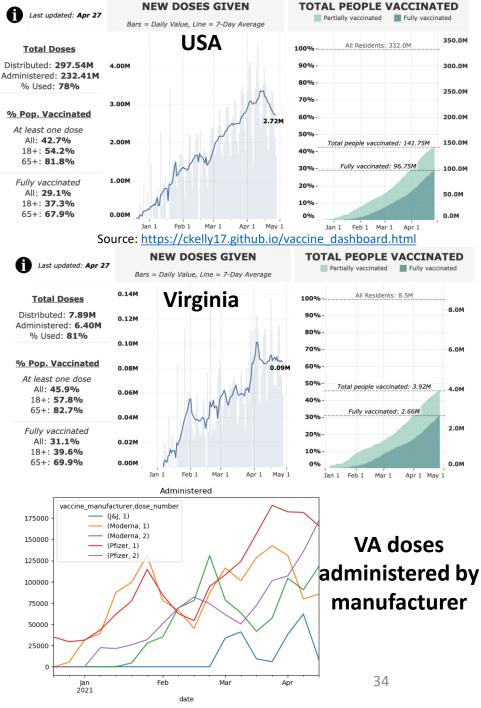
- Variety of factors continue to drive transmission rates
 - Seasonal impact of weather patterns, travel and gatherings, fatigue and premature relaxation of infection control practices
- Plausible levels of transmission can be bounded by past experience
 - Assess transmission levels at the county level. BestPast from May 1, 2020 present; FatigueControl from May 1, 2020 Sept 1, 2020 or current whichever is highest.
 - Use the highest and lowest levels experienced (excluding outliers) as plausible bounds for levels of control achievable
 - Transition from current levels of projection to the new levels over 2 months
 - BestPast Control starts with 3 week delay to account for transition to higher levels of control
- Projection Scenario:
 - BestPast Control: Lowest level of transmission (5th percentile)
 - Fatigued Control: Highest level of transmission (95th percentile) increased by additional 5%

Scenarios – Variant B.1.17

- New Variant B.1.1.7 is best understood and is in Virginia
 - Transmission increase: 50% increase from the current baseline projection based on estimated prevalence in past and future
 - Increased Severity: 60% increase in likelihood of hospitalization 20% and a 60% increase in mortality Nature
 - **Emergence timing:** Gradual frequency increase reaching 50% frequency on April 5th, a couple weeks after the national estimate in MMWR report from CDC and refined by Andersen et al.
- Variant planning Scenario:
 - **DominantB117**: Current projected transmissibility continues to increase through June to a level 50% more transmissible

Virginia - 42.9% (B.1.1.7)

Estimated frequency from public genome repository with added analysis: 43% Current frequency used in model: 79%



Scenarios – Vaccines

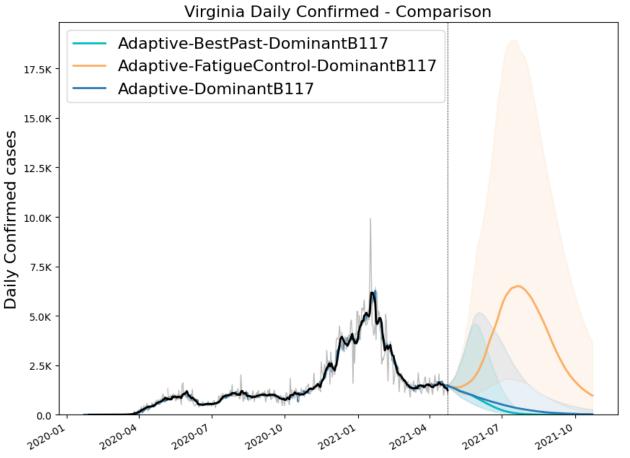
- Projected vaccine schedules constructed using current administration rates by dose and manufacturer for VA counties.
- Assumed vaccine efficacies
 - **Pfizer/Moderna**: 50% after first dose, 95% after second dose (3.5 week gap between doses)
 - J &J: 67% efficacy after first (and only) dose
 - Delay to efficacy from dose assumed to be 14 days
 - Immunity assumed to last duration of simulation (<u>NEJM study</u> shows long lasting, at least 7 months)
- J&J administration has resumed, till data available, assuming it will resume previous levels
- Administration Rate:
 - Pfizer: 137K courses initiated per week
 - Moderna: 72K courses initiated per week
 - J &J: 62K courses initiated per week

Scenarios – Seasonal Effects and Vaccines

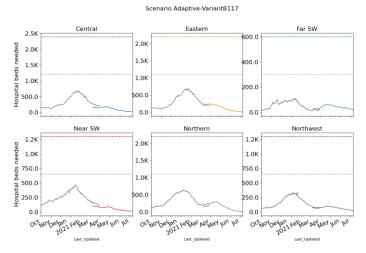
Three scenarios combine these control effects and use the current vaccine schedule

- Adaptive-DominantB117: Boosting of transmissibility from the emergence and likely dominance of B.1.1.7
- Adaptive-BestPast-DominantB117: Best Past controls with transmission boost from B.1.1.7
- Adaptive-FatigueControl-DominantB117: Fatigued controls and transmission boost from B.1.1.7

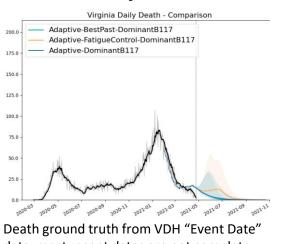
Counterfactuals with no vaccine ("NoVax") are provided for comparison purposes



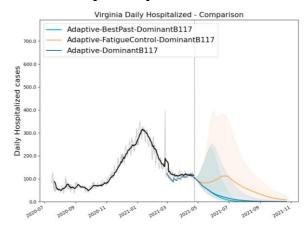
Model Results



Outcome Projections


Confirmed cases

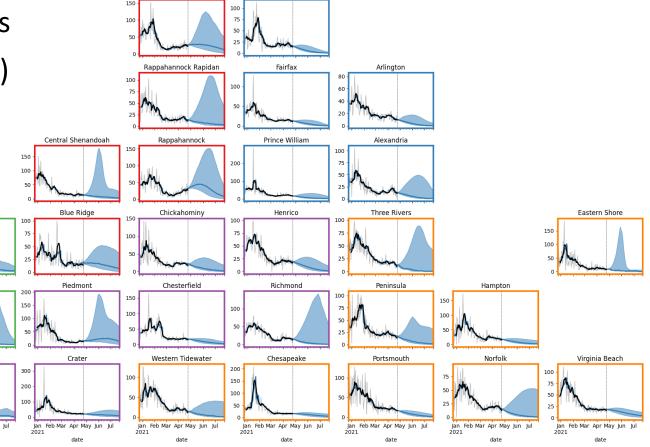
Estimated Hospital Occupancy



Daily Deaths

data, most recent dates are not complete

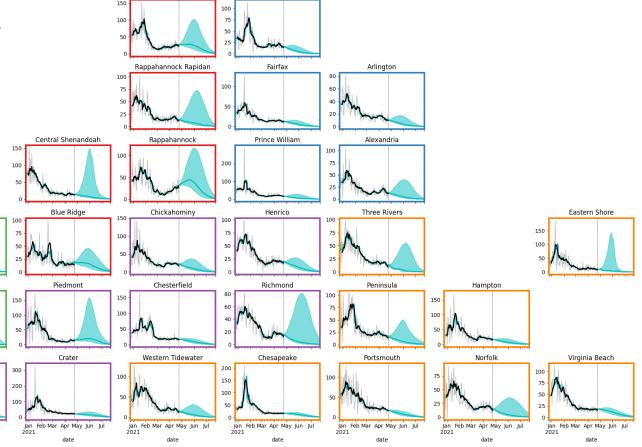
Daily Hospitalized



District Level Projections: Adaptive-DominantB117

Adaptive projections by District

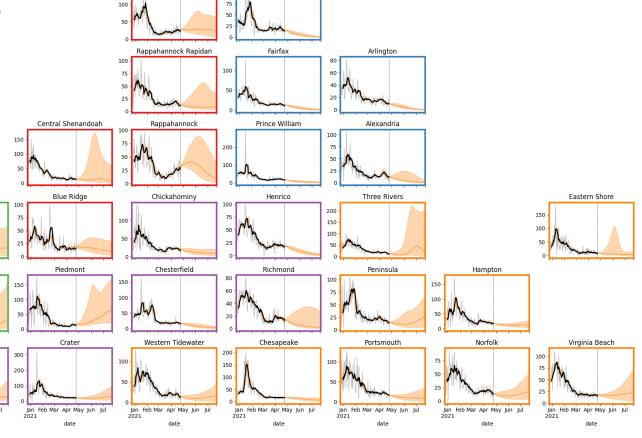
- Projections that best fit recent trends
- Daily confirmed cases rate (per 100K) by District (grey with 7-day average in black) with simulation colored by scenario



District Level Projections: Adaptive-BestPast-DominantB117

Adaptive projections by District

- Projections that best fit recent trends
- Daily confirmed cases rate (per 100K) by District (grey with 7-day average in black) with simulation colored by scenario

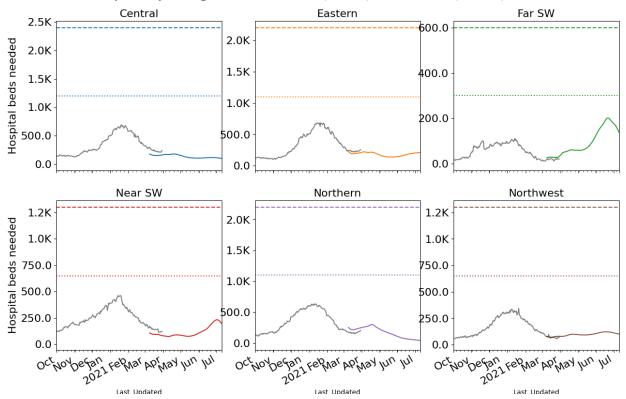


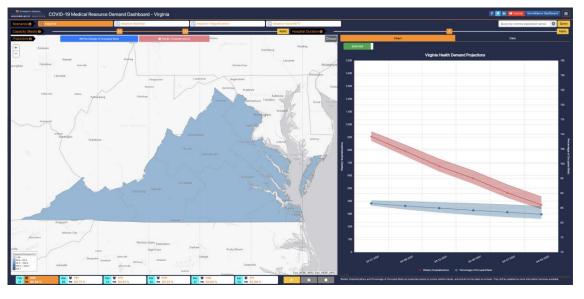
Cumberland

District Level Projections: Adaptive-FatigueControl-DominantB117

Adaptive projections by District

- Projections that best fit recent trends
- Daily confirmed cases rate (per 100K) by District (grey with 7-day average in black) with simulation colored by scenario




400

Hospital Demand and Bed Capacity by Region

Capacities* by Region – Adaptive-FatigueControl-DominantB117

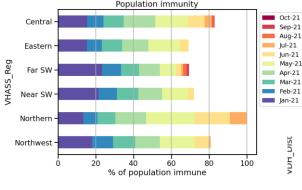
COVID-19 capacity ranges from 80% (dots) to 120% (dash) of total beds

https://nssac.bii.virginia.edu/covid-19/vmrddash/

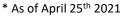
If Adaptive-FatigueControl-DominantB117 scenario:

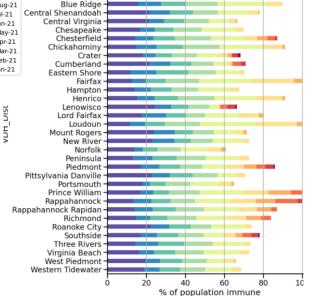
No regions approach capacities

UNIVERSITY OVIRGINIA

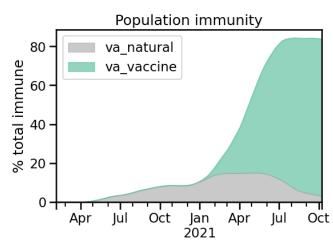

BIOCOMPLEXITY INSTITUTE

Virginia's Progress on Population Immunity


Natural Immunity and Vaccines combine to produce a population level of immunity

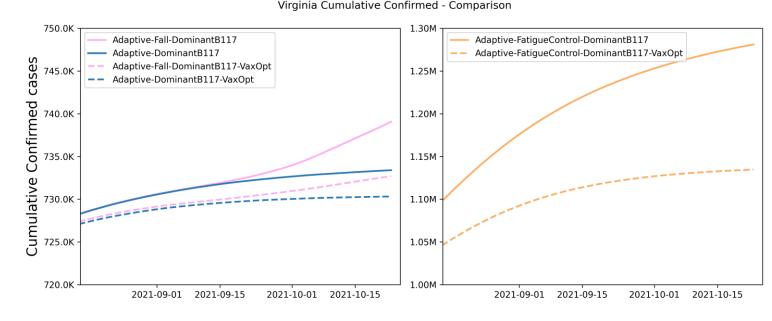

- How long immunity from infection with SARS-CoV2 lasts is not well understood but may vary based on severity of symptoms
 - We assume a conservative 6 month period of protection for these calculations
- Vaccine induced immunity is likely to last longer, we assume indefinite protection
 - This also assumes that all administered vaccines remain protective against current and future novel variants
- Population immunity depends on a very high proportion of the population getting vaccinated
 - Using regional vaccine acceptance

Region	% immune (est.)*	
Central	51%	
Eastern	48%	
Far SW	54%	
Near SW	55%	
Northern	47%	
Northwest	54%	
Virginia	50%	



Alleghany

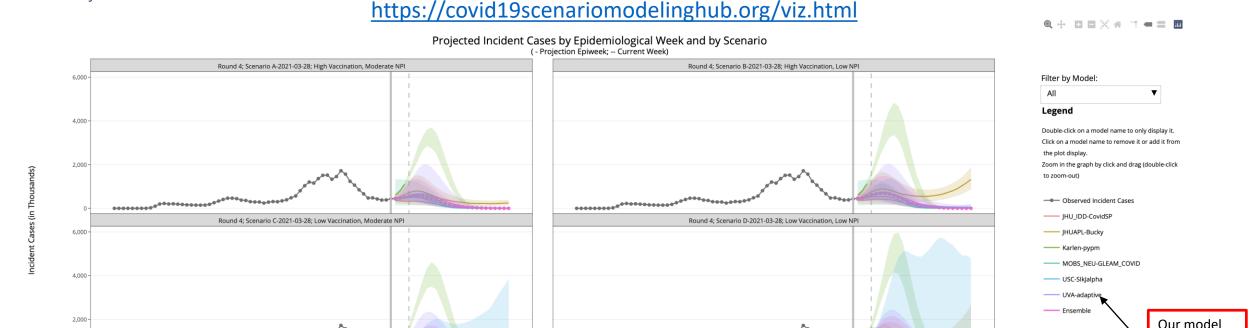
Arlington


Population immunity

Impact of Increased Vaccine Acceptance

Impact of increasing vaccine acceptance in all regions

- Optimistic Vaccination acceptance (VaxOpt) assumes 80% acceptance
- To further test Virginia's resilience to new transmission surges, implement a Fall Surge



- Highest rate from Fall 2020, with a 2 week ramp up starting on Sept 1st 2021
- Population more resilient to Fall Surge (3-4 times fewer cases produced)
- In worst case of sustained Fatigue Control 120K cases averted
- In more realistic case Adaptive-DominantB117 scenario several thousand cases averted

28-Apr-21 43

COVID-19 Scenario Modeling Hub

Model Projection

Collaboration of multiple academic teams to provide national and state-by-state level projections for 4 aligned scenarios that vary vaccine rates (high – low) and levels of control (moderate and low)

Similar to our current scenarios with regular updates, round 5 should be done in 1st week in May

28-Apr-21

is one of 6 contributing groups

Key Takeaways

Projecting future cases precisely is impossible and unnecessary. Even without perfect projections, we can confidently draw conclusions:

- Case rates in Virginia overall are declining with a few areas of growth
- VA mean weekly incidence down to 13/100K from 16/100K, US down (16 from 19 per 100K)
- Population immunity in VA reaches ~50% from vaccines and natural immunity
- Projections show declining rate overall across Commonwealth
- Recent updates:
 - Updated estimates of regional vaccine hesitancy and folded into projections
 - Modeled impact of increased acceptance against future surges in the Fall
- The situation continues to change. Models continue to be updated regularly.

References

Venkatramanan, S., et al. "Optimizing spatial allocation of seasonal influenza vaccine under temporal constraints." *PLoS Computational Biology* 15.9 (2019): e1007111.

Arindam Fadikar, Dave Higdon, Jiangzhuo Chen, Bryan Lewis, Srinivasan Venkatramanan, and Madhav Marathe. Calibrating a stochastic, agent-based model using quantile-based emulation. SIAM/ASA Journal on Uncertainty Quantification, 6(4):1685–1706, 2018.

Adiga, Aniruddha, Srinivasan Venkatramanan, Akhil Peddireddy, et al. "Evaluating the impact of international airline suspensions on COVID-19 direct importation risk." *medRxiv* (2020)

NSSAC. PatchSim: Code for simulating the metapopulation SEIR model. https://github.com/NSSAC/PatchSim

Virginia Department of Health. COVID-19 in Virginia. http://www.vdh.virginia.gov/coronavirus/

Biocomplexity Institute. COVID-19 Surveillance Dashboard. https://nssac.bii.virginia.edu/covid-19/dashboard/

Google. COVID-19 community mobility reports. https://www.google.com/covid19/mobility/

Biocomplexity page for data and other resources related to COVID-19: https://covid19.biocomplexity.virginia.edu/

Questions?

Points of Contact

Bryan Lewis brylew@virginia.edu

Srini Venkatramanan srini@virginia.edu

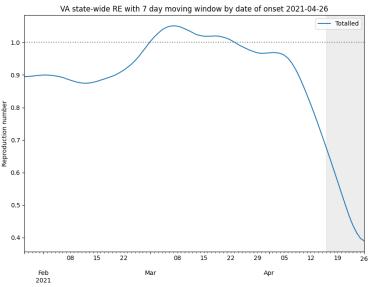
Madhav Marathe marathe@virginia.edu

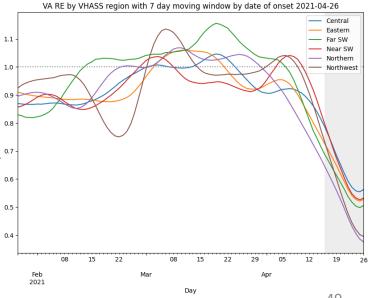
Chris Barrett@virginia.edu

Biocomplexity COVID-19 Response Team

Aniruddha Adiga, Abhijin Adiga, Hannah Baek, Chris Barrett, Golda Barrow, Richard Beckman, Parantapa Bhattacharya, Jiangzhuo Chen, Clark Cucinell, Patrick Corbett, Allan Dickerman, Stephen Eubank, Stefan Hoops, Ben Hurt, Ron Kenyon, Brian Klahn, Bryan Lewis, Dustin Machi, Chunhong Mao, Achla Marathe, Madhav Marathe, Henning Mortveit, Mark Orr, Joseph Outten, Akhil Peddireddy, Przemyslaw Porebski, Erin Raymond, Jose Bayoan Santiago Calderon, James Schlitt, Samarth Swarup, Alex Telionis, Srinivasan Venkatramanan, Anil Vullikanti, James Walke, Andrew Warren, Amanda Wilson, Dawen Xie

Supplemental Slides




Estimating Daily Reproductive Number

April 17th Estimates

Region	Date of Onset R _e	Date Onset Diff Last Week
State-wide	0.644	-0.076
Central	0.753	-0.056
Eastern	0.700	-0.043
Far SW	0.663	-0.135
Near SW	0.755	0.049
Northern	0.616	-0.161
Northwest Methodology	0.686	-0.070

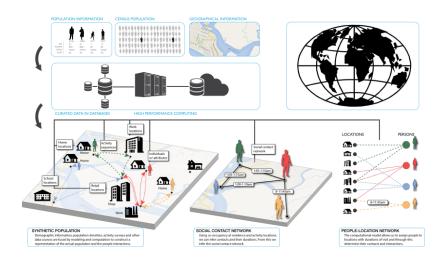
- Wallinga-Teunis method (EpiEstim¹) for cases by confirmation date
- Serial interval: updated to discrete distribution from observations (mean=4.3, Flaxman et al, Nature 2020)
- Using Confirmation date since due to increasingly unstable estimates from onset date due to backfill

^{1.} Anne Cori, Neil M. Ferguson, Christophe Fraser, Simon Cauchemez. A New Framework and Software to Estimate Time-Varying Reproduction Numbers During Epidemics. American Journal of Epidemiology, Volume 178, Issue 9, 1 November 2013, Pages 1505–1512, https://doi.org/10.1093/aje/kwt133

Weekly Cases and Hospitalizations

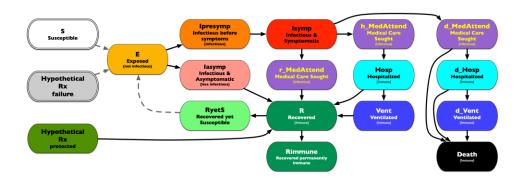
Weekly confirmed cases

Week Ending	Adaptive- DominantB117	Adaptive- BestPast- Dominant B117	Adaptive- Fatigued Control -DominantB117
4/25/21	9,598	9,599	9,597
5/2/21	9,747	9,767	9,850
5/9/21	8,858	8,894	9,683
5/16/21	8,048	8,086	10,150
5/23/21	7,392	7,428	11,250
5/30/21	6,713	6,561	13,152
6/6/21	5,994	5,553	16,388
6/13/21	5,365	4,521	21,163
6/20/21	4,746	3,508	27,038
6/27/21	4,201	2,575	32,380
7/4/21	3,647	1,808	38,477
7/11/21	3,131	1,204	42,721


Weekly Hospitalizations

Week Ending	Adaptive- DominantB117	Adaptive- BestPast- Dominant B117	Adaptive- Fatigued Control -DominantB117
4/25/21	750	750	750
5/2/21	659	659	666
5/9/21	548	548	601
5/16/21	451	452	575
5/23/21	373	372	580
5/30/21	302	292	609
6/6/21	241	219	654
6/13/21	196	159	707
6/20/21	161	112	771
6/27/21	131	74	784
7/4/21	103	48	748
7/11/21	81	29	659

Agent-based Model (ABM)

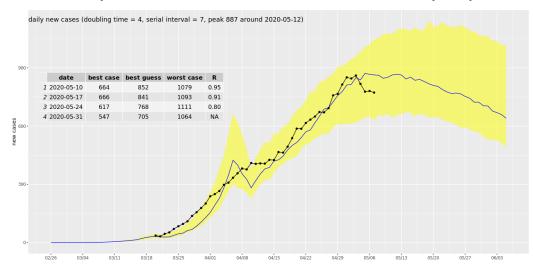

EpiHiper: Distributed network-based stochastic disease transmission simulations

- Assess the impact on transmission under different conditions
- Assess the impacts of contact tracing

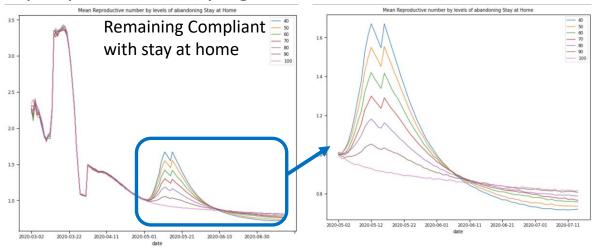
Synthetic Population

- Census derived age and household structure
- Time-Use survey driven activities at appropriate locations

Detailed Disease Course of COVID-19


- Literature based probabilities of outcomes with appropriate delays
- Varying levels of infectiousness
- Hypothetical treatments for future developments

ABM Social Distancing Rebound Study Design


Study of "Stay Home" policy adherence

- Calibration to current state in epidemic
- Implement "release" of different proportions of people from "staying at home"

Calibration to Current State

- Adjust transmission and adherence to current policies to current observations
- For Virginia, with same seeding approach as PatchSim

Impacts on Reproductive number with release

- After release, spike in transmission driven by additional interactions at work, retail, and other
- At 25% release (70-80% remain compliant)
- Translates to 15% increase in transmission, which represents a 1/6th return to pre-pandemic levels

